
796 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Revisiting PM-Based B+-Tree With
Persistent CPU Cache

Bowen Zhang , Shengan Zheng , Liangxu Nie , Zhenlin Qi , Hongyi Chen ,
Linpeng Huang , Senior Member, IEEE, and Hong Mei , Fellow, IEEE

Abstract—Persistent memory (PM) promises near-DRAM per-
formance as well as data persistence. Recently, a new feature
called eADR is available for PM-equipped platforms to guarantee
the persistence of CPU cache. The emergence of eADR presents
unique opportunities to build lock-free data structures and unleash
the full potential of PM. In this paper, we propose NBTree, a
lock-free PM-friendly B+-Tree, to deliver high scalability and low
PM overhead. To our knowledge, NBTree is the first persistent
index designed for PM systems with persistent CPU cache. To
achieve lock-free, NBTree uses atomic primitives to serialize index
operations. Moreover, NBTree proposes five novel techniques to
enable lock-free accesses during structural modification operations
(SMO), including three-phase SMO, sync-on-write, sync-on-read,
cooperative SMO, and shift-aware search. To reduce PM access
overhead, NBTree employs a decoupled leaf node design to absorb
the metadata accesses in DRAM. Moreover, NBTree devises a
cache-crafty persistent allocator and adopts log-structured insert
and in-place update/delete to enhance the access locality of write
operations, absorbing a substantial amount of PM writes in per-
sistent CPU cache. Our evaluation shows that NBTree achieves up
to 11× higher throughput and 43× lower 99% tail latency than
state-of-the-art persistent B+-Trees under YCSB workloads.

Index Terms—B+-Tree, EADR, lock-free, persistent CPU cache,
persistent memory.

I. INTRODUCTION

BYTE-ADDRESSABLE persistent memory (PM), such
as Intel Optane DC persistent memory module

(DCPMM) [1], offers DRAM-comparable performance as
well as disk-like durability. In general, PM-equipped platforms
support the asynchronous DRAM refresh (ADR) feature [2],
which ensures that the content of the PM DIMMs, as well as the
writes that have reached the memory controller’s write pending

Manuscript received 18 August 2023; revised 14 January 2024; accepted
27 February 2024. Date of publication 5 March 2024; date of current version
19 March 2024. This work was supported in part by the National Key Re-
search and Development Program of China under Grant 2022YFB4500303,
in part by the National Natural Science Foundation of China (NSFC) under
Grant 62227809, in part by the Fundamental Research Funds for the Central
Universities, Shanghai Municipal Science and Technology Major Project under
Grant 2021SHZDZX0102, and in part by the Natural Science Foundation of
Shanghai under Grant 22ZR1435400. Recommended for acceptance by D. Li.
(Corresponding author: Shengan Zheng.)

Bowen Zhang, Liangxu Nie, Zhenlin Qi, Hongyi Chen, Linpeng Huang, and
Hong Mei are with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China.

Shengan Zheng is with the MoE Key Lab of Artificial Intelligence, AI
Institute, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
shengan@sjtu.edu.cn).

Digital Object Identifier 10.1109/TPDS.2024.3372621

queues (WPQ), survives power failures. However, writes within
CPU cache remain volatile. Thus, explicit cacheline flush
instructions and memory barriers are required to guarantee the
data persistence.

Recently, a new platform feature called extended ADR
(eADR) is available with the arrival of the 3rd generation Intel
Xeon Scalable Processors and the 2nd generation Intel Optane
DCPMM [3]. Compared with ADR, eADR further guarantees
that data within CPU cache will be flushed back to PM after
a crash through the reserved energy. It ensures the persistence
of globally visible data in CPU cache and eliminates the need
to issue costly synchronous flushes. The emergence of eADR
not only facilitates the design of lock-free data structures but
reduces PM write overhead.

Building efficient index structures in PM is promising to
offer both high performance and data durability for in-memory
databases. Most existing persistent indexes [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15] are solely designed for
ADR-based platforms. On eADR-enabled platforms, an intuitive
transformation approach is to simply remove all cacheline flush
instructions [16]. However, this naive approach cannot fully
exploit the potential of persistent CPU cache. Those indexes still
suffer from two major drawbacks that keep them from achieving
high performance in eADR-enabled platforms.

First, existing persistent indexes suffer from inefficient con-
currency control. Locks are widely used in persistent indexes be-
cause none of the existing primitives can atomically modify and
persist data on ADR-based platforms. Atomic CPU hardware
primitives, such as Compare-And-Swap (CAS), can atomically
modify the data but do not guarantee its persistence because CPU
cache is volatile. Therefore, without locking, it’s possible that
a store hasn’t been persisted before a dependent read from
another thread, leading to a dirty read anomaly. Fortunately,
eADR closes the gap between the visibility and persistence of
the data in CPU cache, making sure that threads always read
persistent data. Thus, eADR provides us with opportunities to
develop efficient lock-free data structures.

Second, existing persistent indexes still impose high over-
heads on PM accesses. Prior researchers strive to lower PM
overhead by reducing the number of cacheline flush instructions,
because data flushing is the primary bottleneck of ADR-based
PM systems [7]. With eADR, explicit data flushes to PM are
no longer necessary. However, excessive PM accesses in index
operations and memory management continue to hinder the
effectiveness of persistent indexes since PM has higher read

1045-9219 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7526-8971
https://orcid.org/0000-0003-2485-760X
https://orcid.org/0009-0005-3462-4430
https://orcid.org/0000-0001-8838-6064
https://orcid.org/0009-0005-2927-2952
https://orcid.org/0000-0002-1531-7962
https://orcid.org/0000-0003-2380-3976
mailto:shengan@sjtu.edu.cn

ZHANG et al.: REVISITING PM-BASED B+-TREE WITH PERSISTENT CPU CACHE 797

latency and lower bandwidth than DRAM [17], [18], [19].
Especially for the write operations, although data flushing to
PM is off the critical path, dirty cachelines will eventually be
written back to PM due to the limited CPU cache capacity, which
consumes scarce PM write bandwidth. Therefore, in order to
fully exploit the potential of PM systems with persistent CPU
cache, it’s necessary to further enhance the cache utilization and
minimize PM accesses in persistent indexes.

In this paper, we present NBTree, a lock-free PM-friendly
B+-Tree to deliver high scalability and low PM overhead. To
our knowledge, NBTree is the first PM index based on eADR-
enabled platforms.

To achieve high scalability, NBTree proposes a fully lock-free
concurrency control protocol. For leaf node operations, NBTree
adopts log-structured insert and in-place update/delete, combin-
ing withCAS primitives, to support lock-free accesses. When the
inserted leaf is full, NBTree replaces the old leaf with new leaves
to maintain the balance of nodes via structural modification
operations (SMO). NBTree proposes three novel techniques
(three-phase SMO, sync-on-write, and sync-on-read) to deal
with the potential anomalies during the lock-free accesses to the
leaf in SMO: (1) Lost update caused by concurrent updates and
deletions to the leaf. NBTree addresses this anomaly by utilizing
three-phase SMO and sync-on-write. When an update or deletion
operates on the leaf during SMO, it first in-place modifies the
old leaf. Then, the modification is either passively migrated to
the new leaf by three-phase SMO or actively synchronized to the
new leaf using sync-on-write. (2) Inconsistent read caused by
concurrent search operations. The lock-free search on the SMO
leaf might read uncommitted dirty data or stale data. NBTree
uses the sync-on-read technique to detect and resolve those
anomalies. To further reduce tail latency, we propose cooper-
ative SMO to make concurrent insertions to the same SMO
leaf work cooperatively. For inner node operations, NBTree
applies hardware transactional memory (HTM) [20] to achieve
atomic writes. Meanwhile, NBTree designs a shift-aware search
algorithm to ensure the lock-free inner node search reaches the
correct leaf.

To reduce PM overhead, NBTree minimizes PM line ac-
cesses and improves the locality of PM writes. First, NBTree
employs a decoupled leaf node architecture to reduce PM line
accesses in index operations. For leaf nodes in NBTree, the
metadata and key-value pairs are decoupled into two layers.
The metadata layer is stored in DRAM along with inner nodes.
PM only contains the key-value layer so that the number of
PM reads and writes is minimized. Second, NBTree proposes a
Cache-crafty persistent allocator (Calloc) to enhance the locality
of metadata modifications for persistent memory management.
Specifically, Calloc employs a global allocation bitmap, re-
claimed ring buffers, and recyclable logs, which fully utilize
persistent CPU cache to absorb the majority of PM writes
occurred during allocation, deallocation, and logging, thereby
conserving scarce PM write bandwidth. Meanwhile, NBTree
adopts log-structured insert and in-place update to improve the
locality of write operations in NBTree, reducing PM writes in the
skewed workloads.

In summary, the contributions of this paper include:

� We provide an in-depth analysis of the benefits of persistent
CPU cache. Then, we propose NBTree, the first persistent
index designed for PM systems with persistent CPU cache
as far as we know.

� We propose lock-free concurrency control for NBTree to
achieve high scalability. Our proposed techniques, such as
three-phase SMO, sync-on-write, sync-on-read, coopera-
tive SMO, and shift-aware search, ensure strong consis-
tency for lock-free operations.

� We propose a decoupled leaf node structure for NBTree,
which reduces the number of PM line reads and writes in
each operation and improves cache utilization.

� We propose a cache-crafty persistent memory allocator for
NBTree, which fully exploits persistent CPU cache to re-
duce PM writes produced in PM management, conserving
scarce PM write bandwidth.

� We implement NBTree and our evaluation results show that
NBTree achieves up to 11× higher throughput and 43×
lower 99% tail latency than state-of-the-art counterparts
under YCSB workloads.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the background of persistent
memory and eADR mechanism (Section II-A). Then, we analyze
how to minimize the PM access overhead in eADR-enabled
platforms (Section II-B). Finally, we describe the challenges
of designing lock-free persistent data structures (Section II-C).

A. Persistent Memory and eADR

Persistent memory (PM), which is now commercially
available, provides many attractive features, such as byte-
addressability and data persistency. However, PM still has higher
latency and lower bandwidth than DRAM. To reduce write
latency, existing PM-based systems utilize the ADR mecha-
nism [2] to drain the writes sitting on the write pending queues
(WPQ) to PM by the reserved energy during a power outage.
Therefore, data that reaches the WPQ of ADR-based platforms
is considered persistent, whereas data in the CPU cache remains
volatile. As a result, an additional pair of the flush instruction
(e.g., clwb, clflush, and clflushopt) and memory bar-
rier (e.g., mfence, and sfence) is necessary for programmers
to guarantee data persistency [16].

Fortunately, eADR is supported on the 2nd generation Intel
Optane DCPMM with the 3rd generation Intel Xeon Scalable
Processors. eADR-enabled platforms reserve more energy that
enables them to flush data in CPU cache to PM after a power
failure, thereby expanding the persistence domain to include
CPU cache [21].

eADR offers the following advantages over ADR. The first
one is reducing PM write overhead. With persistent CPU cache,
synchronous cacheline flush instructions are no longer neces-
sary, which reduces PM write overhead in two aspects. (1)
Reducing the latency in the critical path. Previously, flush
instructions and memory barriers result in up to an order of
magnitude higher latency in the critical path [7]. (2) Saving PM
write bandwidth. Write operations with high locality can hit the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

798 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

TABLE I
PM OVERHEAD PRODUCED WHEN ACCESSING B+-TREE’S LEAF NODES

CPU cache without flushing the modifications to PM, reducing
the bandwidth consumption.

The second one is facilitating the lock-free design. Data
structures can atomically modify and persist data with eADR,
facilitating the lock-free design in PM. Most lock-free data
structures [22], [23], [24], [25] rely on atomic CPU hardware
primitives, such as CAS. However, in ADR-based platforms,
those primitives can atomically modify data but cannot ensure
their persistence because the CPU cache is volatile. Threads
are likely to read unpersisted data in CPU cache, resulting in
the dirty read anomaly. With eADR, the globally visible data
in CPU cache is ensured to be persisted. Thus, it is possible to
modify and persist data atomically.

B. PM Overhead Analysis

The performance gap between PM and DRAM encourages
people to design PM-friendly storage systems to reduce I/O
overhead. Previous works [30], [31], [32], [33], [34], [35], [36],
[37], [38] designed for ADR-based platforms mostly focused on
reducing the costly flush instructions. With eADR, flushing is
no longer required, which dramatically reduces the latency of
PM writes. Meanwhile, PM writes with high locality can hit the
CPU cache, which conserves the PM write bandwidth. However,
dirty cachelines will eventually be evicted to PM according to the
cache replacement policy. Excessive PM writes with low locality
still result in high latency due to the poor PM write bandwidth.
Besides, PM also has higher read latency than DRAM. Thus, the
unique features of eADR require a rethinking of how to reduce
PM overhead.

We conclude the following three design goals to reduce
PM overhead in eADR-enabled platforms. First, reducing the
number of PM line writes (the 64-byte aligned PM line written
in CPU cache). Reducing PM line writes can generate fewer
dirty cachelines, thereby saving PM write bandwidth. Second,
increasing the access locality of write operations. This allows the
write operations to hit the CPU cache more frequently, reducing
PM writes in eADR-enabled platforms. ADR-based platforms
do not benefit much from it because write operations are required
to be synchronously flushed to PM. Third, reducing the number
of PM line reads. The relatively higher read latency of PM is
non-negligible, especially in read-intensive workloads.

Existing persistent indexes fall short of the aforementioned
design objectives due to excessive PM line read/writes and
poor write locality. Table I shows that the base operations in

the state-of-the-art persistent B+-Trees produce considerable
PM line read/writes when accessing the leaf nodes. Excessive
PM line writes consume scarce PM write bandwidth, while too
many PM line reads incur high latency. Moreover, due to the as-
sumption that CPU cache is volatile, existing persistent indexes
do not focus on increasing write locality. Hence, they can not
fully utilize CPU cache to reduce PM writes in eADR-enabled
platforms. Meanwhile, we notice that the strategies of reducing
the number of flushes in ADR-based platforms sometimes result
in fewer PM line writes. However, they are not equivalent. For
example, RNTree [28] proposes a selective metadata persistence
technique, which reduces the number of flushes but cannot
diminish PM line writes.

In addition to the PM overhead that occurred during index
operations, persistent indexes also incur considerable PM writes
during the PM allocation/deallocation [8], [39]. To persistently
record the allocation state of each PM chunk, persistent allo-
cators often produce a large number of random PM writes to
modify various metadata. Despite the fact that flush instructions
are no longer required with eADR, these metadata modifications
still consume a significant quantity of PM write bandwidth due
to the poor access locality.

C. The Opportunities and Challenges of Lock-Free Persistent
Data Structures

As we analyzed in Section II-A, eADR facilitates the design of
lock-free persistent data structures by preventing the dirty read
anomaly resulting from concurrent threads reading unpersistent
data in CPU cache. In eADR-enabled PM systems, lock-free
concurrency protocols not only enhance the scalability but also
ensure the crash consistency of persistent data structures. Lock-
free data structures always keep in a consistent state through
atomic updates or temporarily reside in an inconsistent state that
can be fixed by concurrent threads using a cooperative mecha-
nism. Therefore, concurrent operations proceed without the need
for lock serialization, improving the scalability in multi-core
systems. Meanwhile, the eADR mechanism guarantees instant
durability for each visible state transformation in the CPU cache.
Consequently, after a system crash, lock-free data structures will
be found in either a consistent state or an inconsistent state that
can be fixed by the subsequent operations.

However, even with eADR, it’s non-trivial to design lock-free
data structures (LFD). The major challenge lies in the hardware
restrictions on CPU atomic primitives, which can only atomi-
cally modify a single word (8-byte). In contrast, a single state
transformation in non-trivial data structures often needs to write
multiple words. Therefore, data structures are likely to expose
intermediate states to concurrent threads. Those problems may
result in anomalies such as lost update and inconsistent read.
For example, structural modification operations, such as split,
are the most complex state changes in B+-Trees. During the
split, B+-Tree transfers the content of the old node to newly
allocated nodes and then replaces the old node with new nodes.
As the split cannot be completed atomically, a concurrent update
may occur in the old node but be missed in the new nodes. In this
situation, new nodes are facing the risk of the inconsistent read
anomaly since they are stale. Even worse, if the update is not

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: REVISITING PM-BASED B+-TREE WITH PERSISTENT CPU CACHE 799

properly synchronized to new nodes, it will be lost permanently,
incurring the lost update anomaly.

Furthermore, existing lock-free concurrency protocols fall
short of fully optimizing the performance of persistent data
structures since they do not consider the unique PM charac-
teristics and the emerging eADR feature. DRAM-based lock-
free data structures are not inherently tailored to accommodate
PM-specific characteristics discussed in Section II-B, such as
high read latency and low write bandwidth. Hence, they tend to
exhibit significantly reduced performance when applied to PM,
largely attributed to their excessive memory accesses. For exam-
ple, Bw-tree [23], a DRAM-based B+Tree, achieves lock-free
concurrency through a delta update policy. During the updates,
Bw-tree atomically links a delta record to the tree node via a
pointer. However, this approach leads to multiple small random
PM writes for each write operation and dramatically increases
the pointer chasing length for read operations. Moreover, for
skewed workloads, the delta update policy fails to leverage
CPU cache to absorb frequent updates of hot key-value en-
tries, unlike what NBTree accomplishes. Furthermore, Bw-tree
stores the logical pointers in the tree node and maintains a
mapping table to transform the logical addresses of tree nodes
to physical addresses. Such an indirection introduces additional
overhead to memory accesses. Consequently, as evaluated by
Arulraj [15], directly deploying Bw-tree in PM results in inferior
performance. For persistent memory PM-based lock-free data
structures intended for ADR-enabled systems, there exists a
substantial overhead in ensuring crash consistency. For example,
BzTree [15] achieves lock-free concurrency by using PMw-
CAS [40], an extension of MwCAS [41] that guarantees both
atomicity and durability of writes. However, BzTree exhibits
inferior performance compared to lock-based B+-Trees. This
degradation is attributed to the excessive reads and writes on
persistent memory induced by the persistence guarantee offered
by PMwCAS.

III. PM-FRIENDLY B+-TREE

NBTree achieves low latency and high scalability by lowering
PM overhead in the following two aspects: (1) Reduce the
number of PM line reads/writes during each index operation.
(2) Increase the access locality of write operations to absorb PM
writes in persistent CPU cache.

In this section, we describe the PM-friendly design of NBTree.
We first present the overall architecture (Section III-A), and then
describe the base operations of NBTree (Section III-B). Finally,
we introduce our cache-crafty persistent allocator (Calloc) for
NBTree (Section III-C).

A. NBTree Structure

The overall architecture of NBTree is shown in Fig. 1. NBTree
employs a decoupled leaf node architecture, which separates the
leaf node into a metadata layer and a key-value layer. The meta-
data layer, as well as the inner nodes of NBTree, is maintained
in DRAM. They can be rebuilt from the persistent key-value
layer of leaf nodes in PM during recovery. The decoupled leaf
node design enables NBTree to absorb metadata operations in
DRAM, reducing PM line accesses drastically.

Fig. 1. Overall architecture of NBTree.

Fig. 2. Procedure of an insertion on an NBTree’s leaf. (The fingerprints (fps)
of the keys are set to key%10 for brevity).

Specifically, for leaf nodes, both the metadata layer and
the key-value layer are linked into a singly linked-list. In the
key-value layer, each key-value block is an unsorted array of
key-value entries. Each key-value entry stores a 64-bit key and a
64-bit payload. The highest 2 bits (copy_bit andsync_bit)
of the payload are reserved for concurrency control. For variable-
sized key-value entries, NBTree stores pointers that indicate
the actual keys or values. Each leaf’s metadata consists of the
following fields: (1) fps to store the one-byte fingerprint (hash
value) for each key in the leaf, which speeds up key-search on the
unsorted array. (2) num to store the number of entries occupied
by both the committed and in-flight insertions, which handles
concurrent insertions. (3) bitmap to track the position of the
committed insertions in the leaf. (4) data_ptr to indicate
the address of its key-value block. (5) copy_ptr to store the
address of newly allocated leaves when the leaf performs SMO.
(6) flag to track the status of SMO. (7) next to indicate the
address of the sibling leaf. For inner nodes, NBTree adopts the
structure of FAST&FAIR [29].

B. Base Operations

NBTree reduces the overhead of base operations (insert,
update, delete, and search) by minimizing PM line accesses
and maximizing the cache utilization. For each base operation,
NBTree first locates the corresponding leaf by searching the
inner nodes in DRAM. Then, it adopts log-structured insert,
in-place update/delete, and efficient search to reduce the average
number of PM line read/writes on the persistent leaf node to 1
and increase the access locality.

Log-structured Insert: Insertions perform in a log-structured
manner in NBTree. Fig. 2 illustrates the steps of inserting a
new key-value pair in NBTree’s leaf. First, NBTree increases
the number (1©) to occupy the next free slot. Then, NBTree

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

800 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

writes the value (2©) and the key (3©) to the occupied slot.
After writing the key, the new insertion can survive a power
failure. Finally, NBTree updates the fps (4©) and bitmap
(5©) to make insertion visible. We observe that the only PM
overhead in an insertion is storing a key-value pair. Moreover,
with eADR, the log-structured insert manner also allows the
consecutive insertions on the same leaf to combine in persistent
CPU cache, reducing PM writes.

In-place Update/Delete: Conventional log-structured B+-
Trees, such as NVTree [26] and RNTree [28], update or delete
key-value entries by appending new entries. NBTree, on the
other hand, performs in-place update/delete. To update a key-
value entry, NBTree modifies its value in-place. To delete an
entry, NBTree invalidates it by resetting its key to 0. Update and
delete can survive system crashes by modifying and persisting
the 8-byte key or value with eADR support. In-place update
manner is not favored in ADR-based platforms, as repeatable
flushes to the same cacheline cause extra latency especially
running on skewed workload [13]. With eADR, in-place updates
minimize PM line writes and increase the write locality of
frequently accessed key-value entries.

Efficient Search: The search range is confined to the valid
entries indicated by the bitmap. This ensures that the entry
found by the search operation is persistent and committed.
NBTree further narrows the average number of candidate entries
to one by checking thefingerprints. Finally, NBTree scans
the candidate entries to filter the unmatched keys and the deleted
keys. In most cases, the search operation produces only one
PM line read, since the candidate entry is often unique, and the
metadata is stored in DRAM.

Crash Consistency: NBTree can restore its metadata layer
and inner nodes using the key-value layer after a crash. During
recovery, NBTree scans the list of key-value blocks and labels
the slots with non-zero keys as the valid key-value entries. Then,
NBTree rebuilds the metadata layer and the inner nodes based
on those valid entries.

NBTree maintains consistency even if a crash occurs in
the middle of a write operation (insertion/update/deletion). As
shown in Fig. 2, during an insertion, writing the key (3©) happens
after writing the value (2©). If the crash happens after writing
the key, the intact key-value pair will survive. Otherwise, the
in-flight insertion will not leave NBTree in an inconsistent
state because the key of the occupied slot is still 0, which is
discarded after the recovery. For updates and deletions, they can
be completed by atomically modifying 8-byte keys or values,
without exposing intermediate state.

C. Cache-Crafty Persistent Allocator

In this section, we propose a cache-crafty persistent allocator
(Calloc) to manage PM allocation/deallocations of NBTree. As
shown in Fig. 3, Calloc employs a two-layer architecture and
offers an allocation bitmap, reclaimed ring buffer, and recyclable
log to increase the write locality during allocation, deallocation,
and logging. Consequently, most of PM writes for the memory
management can be absorbed in persistent CPU cache, saving
PM write bandwidth in the eADR-enabled platforms.

Fig. 3. Overall architecture of Calloc.

Two-layer Architecture: As shown in Fig. 3, Calloc is com-
posed of a coarse-grained global PM allocator and multiple
fine-grained thread-local allocators. The global PM allocator
contains a leaf pool that is managed in coarse-grained large
memory chunks (e.g., 16 MB) and various metadatas for crash
consistency. The thread-local leaf allocators locally manage the
leaf allocations and deallocations for each worker thread to
reduce thread-contentions. Each worker thread asynchronously
requests large memory chunks from the global memory pool
on demand by using fetch_and_add to atomically increase
alloc_num, which has little persistence overhead since it hap-
pens infrequently. Thread-local leaf allocators divide the large
memory chunk into multiple leaf nodes and push the continuous
leaf addresses into the volatile free leaf lists to serve the leaf
allocations.

Allocation Bitmap: To persistently record the allocation state
of each leaf node in the free leaf lists with minimal PM writes,
Calloc maintains an allocation bitmap in the global memory
pool. Each bit in thebitmap indicates whether a leaf node in the
global memory pool is allocated. After allocating a leaf address
from the thread-local free leaf list, Calloc sets the corresponding
allocation bit of thebitmap. Due to the locality of allocations in
Calloc, continuous allocations are likely to modify the bitmap
in the same cacheline. In eADR-enabled platforms, those write
combining in CPU cache dramatically reduce PM writes of
allocations.

Reclaimed Ring Buffer: Calloc proposes a thread-local re-
claimed ring buffer design to minimize PM writes during the
garbage collection. Although Calloc can ensure the locality of
updating the bitmap during the allocations, the deallocations
tend to modify the bitmap randomly, producing expensive
random PM writes. Therefore, Calloc employs a persistent
reclaimed ring buffer to store the addresses of recently freed
leaf nodes. Specifically, during the deallocation, Calloc appends

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: REVISITING PM-BASED B+-TREE WITH PERSISTENT CPU CACHE 801

the freed leaf address to the tail of the ring buffer. As for the
allocations, Calloc first consumes the freed leaf nodes in the
header of the ring buffer before accessing the free leaf list.
In this way, the random PM writes to the bitmap during the
garbage collection can be avoided when the reclaimed ring buffer
is not full. Meanwhile, the small reclaimed ring buffers are
frequently accessed during the allocations and deallocations of
leaf nodes. As a result, writes on reclaimed ring buffers tend to
hit CPU cache, which does not consume PM write bandwidth in
eADR-enabled platforms.

Recycable Log: Calloc introduces the recyclable log design
to address the memory leak problem that might happen in
the structural modification operations (SMOs, e.g., split) with
little persistence overhead. During SMO, NBTree first allocates
new leaves, then performs three-phase SMO (Section IV-B) to
replace the old leaf with new leaves, and finally reclaims the
old leaf. The memory leak will occur if the crash happens when
the allocated leaves are not linked into NBTree or the old leaf
unlinked from NBTree is not reclaimed.

To resolve this problem in SMO, Calloc records the addresses
of both old leaf and new leaves in the thread-local recyclable
log before updating the bitmap to persist the allocation of
new leaves. After completing SMO and the deallocation of old
leaf, Calloc clears the log information so that it can be reused
for the subsequent SMOs. In this way, Calloc can reclaim the
potentially leaked leaf nodes during the recovery procedure by
accessing the log entry. Meanwhile, Calloc is able to reuse the
same memory space of log entry for SMOs that happened in the
same worker threads. Due to frequent accesses, the recyclable
log tends to reside in the persistent CPU cache. Hence, PM writes
to recyclable logs can be absorbed in the persistent CPU cache
with the support of eADR.

Discussion: To make Calloc more adaptable to general sce-
narios, Calloc can maintain thread-local free block lists with
different sizes, similar to buddy systems. Moreover, for multi-
socket systems, Calloc creates separate memory pools for each
NUMA node to reduce expensive cross-NUMA accesses, which
is inspired by PACTree [42].

IV. LOCK-FREE DESIGN

In this section, we introduce the lock-free concurrency control
of NBTree, which is based on a precondition guaranteed by the
eADR-enabled platforms: globally visible data is persistent.
We propose different concurrency-control protocols for opera-
tions on normal leaf nodes (Section IV-A), leaf nodes during
SMO (Section IV-B), and inner nodes (Section IV-C).

A. Leaf Node Operations

We divide the base operations in NBTree into two categories.
The first category isinsert, which appends new data to the free
slot. The second category is UDS operations, including update,
deletion, and search. The UDS operations always work on the
committed insertions. In the following, we discuss how NBTree
resolves theinsert-insert,UDS-UDS, andinsert-UDS
conflicts.

TABLE II
APPROACHES EMPLOYED DURING DIFFERENT PHASES OF SMO TO FACILITATE

LOCK-FREE LEAF NODE OPERATIONS

Insert-Insert Conflicts: We use atomic primitives to serialize
concurrent insertions. As shown in Fig. 2, to begin an insertion,
NBTree uses the fetch_and_add to atomically increase the
num, occupying the next free slot. This ensures that concurrent
insertions are placed in separate slots. At the end of an insertion,
NBTree uses CAS to atomically update the bitmap, which
commits the insertion. In this way, NBTree achieves lock-free
insert on the leaf nodes.

Insert-UDS Conflicts: Those conflicts are naturally solved
in NBTree. First, an insertion always writes the data into
the unused space, which does not affect the UDS operations.
Second, NBTree commits an insertion by atomically updating
the bitmap, which makes the new insertion visible to UDS
operations. Therefore, UDS operations always operate on the
completed insertions.

UDS-UDS Conflicts: UDS-UDS conflicts in NBTree are re-
solved in eADR-enabled platforms by using atomic primitives.
As mentioned above, updates and deletions only need to modify
8-byte keys or values. Therefore, they can be completed atom-
ically without exposing the intermediate states. With persistent
CPU cache, those modifications can also be persisted at the same
time. Thus, the order of committing and visibility for concurrent
updates and deletions are always maintained, and the search
operation always reads the latest committed data.

B. Structural Modification Operations

Structural modification operations (SMOs) are initiated when
a key-value entry is inserted into a full leaf. The conventional
procedure of SMO is to copy the entries from the full old leaf to
the newly allocated leaves, and then replace the old leaf with the
new leaves. However, since the copy phase cannot be completed
atomically, lock-free concurrent modifications to the old leaf
may not be synchronized to the new leaves, resulting in the lost
update anomaly. Moreover, the lock-free search might read dirty
or stale data due to the inconsistency between the old leaf and
new leaves.

Table II shows the approaches used by NBTree to resolve the
potential anomalies and facilitate lock-free accesses. In NBTree,
SMO is divided into three phases (copy phase, sync phase,
and link phase). During each phase, different approaches are
used to handle concurrent operations on the SMO leaf. For
UD (update/delete) operations, NBTree resolves the lost update
anomaly with the sync phase of the SMO and the sync-on-write
technique. For search operations, NBTree uses sync-on-read
to prevent the inconsistent read. We also propose cooperative
SMO, which enables concurrent insertions to complete SMO
cooperatively.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

802 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Fig. 4. Procedure of three-phase SMO and sync-on-write when updates and
deletions operate on an SMO leaf.

Three-phase SMO: As shown in Fig. 4, different from the
SMO of traditional B+-Trees that only includes the copy phase
and link phase, NBTree adds a sync phase to avoid the lost update
anomaly caused by UD operations during the copy phase. In the
following, we will describe the procedure of each phase.

In the copy phase, SMO copies the valid entries with non-zero
keys in the full leaf to new leaves. As shown in Fig. 4, NBTree
allocates two new leaves if the number of valid entries exceeds a
certain threshold (half of the leaf capacity by default). Otherwise,
only one new leaf is allocated. Then, NBTree distributes key-
value pairs to the new leaves and constructs their metadata layer.
Finally, NBTree sets the copy_ptr in the old leaf to indicate
the address of the first new leaf.

In the sync phase, NBTree synchronizes the lostUDoperations
to new leaves. During the copy phase, concurrent UD operations
still write to the old leaf. As the copy phase cannot be completed
within an atomic instruction, those UD operations, such as Up-
date(2,s) in Fig. 4, might not have been migrated to new
leaves yet. Therefore, in the sync phase, NBTree employs CAS
to synchronize the missed UD operations to new leaves.

The link phase replaces the old leaf in NBTree with new
leaves. NBTree first links new leaves into the singly linked-list
of the key-value layer and the metadata layer by changing the
next pointer of the previous leaf. Then, NBTree installs new
leaves to the parent node (described in Section IV-C).

Sync-on-write: In the post-copy phases of SMO, UD opera-
tions resolve the lost update anomaly by adopting a sync-on-
write approach, which actively synchronizes the modification
from the old leaf to the new leaf. Specifically, for an update,
after modifying a key-value in the old leaf, it re-searches the
target key in the new leaf. If the corresponding value in the new
leaf is not up-to-date, NBTree synchronizes the latest update to
the new leaf using CAS. With persistent CPU cache, CAS can
atomically modify and persist the synchronization. Similar to the
update, the deletion also re-executes in the new leaf if it contains
the target key. NBTree imposes low-overhead on sync-on-write
because it only incurs one additional search on the new leaf and
one CAS primitive.

During the post-copy phases of SMO, sync-on-write pre-
vents lock-free UD operations from suffering the lost update
anomaly. As illustrated in Fig. 4, during the copy phase, any UD
operation that happens on the old leaf (e.g., update(2,s))

TABLE III
LATEST AND CLEAN LEAVES IN DIFFERENT PHASES OF SMO

will be synchronized to the new leaf in SMO’s sync phase.
However, UD operations happen after the copy phase (e.g.,
update(8,y), delete(3)) may still be lost. To avoid the
lost update anomaly,UD operations need to actively synchronize
the modification by calling sync-on-write.

Through sync-on-write and three-phase SMO, we ensure that
NBTree always maintains a consistent state that includes all
committed operations after a crash. As we previously mentioned,
SMO’s durability point is when the new leaves replace the old
leaf in PM by linking themselves into the key-value layer during
the link phase. If a crash occurs before the durability point,
the old leaf will remain in the key-value layer. During SMO,
any modification must first operate on the old leaf. Therefore,
as illustrated in Table III, the old leaf always holds both the
latest committed and uncommitted operations during SMO. The
uncommitted operations in the old leaf are consistent since they
come from theUD operations that do not finish the sync-on-write.
The sync-on-write is unnecessary since the new leaves are dis-
card when the crash happens before durability point. If a crash
occurs after the durability point, the new leaf will be linked into
the key-value layer. At that time, all UD operations committed in
the copy phase have already been synchronized to the new leaf
in the sync phase. For UD operations that happen after the copy
phase, they are only committed when they write to a new leaf.
As a result, new leaves hold the latest committed operations
after the durability point. To summarize, the consistent leaf
with the latest committed operations will survive whenever the
crash happens.

SMO threads (sync phase) and UD threads (sync-on-write)
may synchronize the same value to the new leaf concurrently.
NBTree can serialize those synchronizations using the highest
two bits of each entry’s value. We will discuss this scenario in
Section V.

Sync-on-read: To deal with the potential inconsistency be-
tween the old leaf and the new leaves, the search operations
employ the sync-on-read approach to synchronize the corre-
sponding key-value entries from the old leaf to the new leaf.
Specifically, NBTree searches the target key in both old and
new leaves. If the returned results differ, the search operation
updates or deletes the key-value in the new leaf to match the one
in the old leaf. The overhead of the sync-on-read is as low as the
sync-on-write.

Sync-on-read guarantees that a lock-free concurrent search
returns the latest and committed version of a key-value entry.
During SMO’s sync phase, reading from either old or new leaves
without performing sync-on-read may lead to the inconsistent

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: REVISITING PM-BASED B+-TREE WITH PERSISTENT CPU CACHE 803

read. As illustrated in Table III, in the sync phase, the old leaf
is possibly dirty because the UD operations might have not
committed due to an on-going sync-on-write. Meanwhile, the
new leaf is likely stale as the SMO thread may not have finished
synchronizing the latest modification that happened during the
copy phase. To address this problem, the search operation uses
sync-on-read to synchronize the latest key-value from the old
leaf to the new leaf. It makes sure that the target key-value pair
in the new leaf is both the latest and clean before returning the
search result.

Search operations on the leaf that is not in the sync phase
can directly read the correct value without calling sync-on-read.
Table III shows the destination of reads, which is the leaf that
holds both the latest and clean key-value pairs. During the copy
phase, incoming reads go to the old leaf, which is both the latest
and clean since concurrent UD operations directly commit in the
copy phase. After the sync phase, reads go to the new leaf. This is
because previous UD operations that happened in the copy phase
have already been synchronized to the new leaf, while later UD
operations are committed once they are visible in the new leaf.

Cooperative SMO: In NBTree, concurrent insertions to the
leaf during SMO employ cooperative SMO. The insertion thread
that encounters a leaf with an in-flight SMO will help complete
its SMO before continuing. NBTree uses atomic primitives, such
as CAS, to coordinate multiple SMO threads, making sure only
the fastest modification can be visible. In this way, instead of
waiting for the completion of SMO, NBTree guarantees that
SMO moves forward at the fastest speed, even when a certain
SMO thread is suspended.

Specifically, in the copy phase, multiple SMO threads prepare
new nodes respectively and use CAS primitive to atomically
install the copy_ptr. In the sync phase, the synchronization
of each key-value entry can also be completed cooperatively
by using CAS primitive. In the link phase, NBTree uses CAS
to link the new leaf into the metadata layer and the key-value
layer. Then, NBTree uses HTM (described in Section IV-C) to
atomically update the parent node.

C. Inner Node Operations

We propose a shift-aware search algorithm and use the HTM-
based update to coordinate concurrent inner node operations.

HTM-based Update: NBTree uses HTM to atomically up-
date inner nodes following FPTree [4]. HTM is an optimistic
concurrency control tool that uses hardware transactions to
make multiple writes atomically visible in a lock-free manner.
HTM transaction only aborts when data conflicts are detected.
Wrapping updates in HTM is efficient because the conflict of
inner node modifications rarely happens. Moreover, updates do
not expose intermediate states to other threads, which avoids the
read thread viewing the inconsistent state.

Shift-aware Search: Although the modifications to the inner
nodes are atomic, lock-free inner node search might find the
wrong child pointer due to the read-write conflict. As illus-
trated in Fig. 5, the search operation performs a linear search
(Search(18)) to retrieve the key of 20 (2©). However, before

Fig. 5. Shift-aware search on the inner node under the read-write conflict.
(XBEGIN means the start of the transaction, XEND means the end of the
transaction).

it fetches the corresponding pointer P2, an insertion (In-
sert(PL,15,PR)) modifies the node. Therefore, the search
operation loads the wrong pointer PL (3©) instead of P2 or
PR. As a result, an existing key might be missed in the search
operations.

NBTree proposes a shift-aware search algorithm to ensure the
correctness of lock-free inner node search despite concurrent
write transactions (insertion or deletion) on the same node. As
shown in Fig. 5, before proceeding to the next level of the tree
through PL, NBTree checks if the fetched key (20 in 2©) has
been shifted by concurrent write transactions. If so, NBTree
re-searches the node from the current position (4©- 6©), making
sure that the target key lies within the sub-tree indicated by the
returned pointer.

The shift-aware search algorithm always finds the correct
pointer for the following two reasons. First, NBTree keeps
searching and data shifting in the same direction. As shown
in Fig. 5, during the search, the insertion shifts the data from
left to right. If the search proceeds in the same direction, then it
never misses the newly inserted key. Inspired by FAST&FAIR,
we maintain a switch_counter in each node, which is
increased when the insertion and deletion on the inner node take
turns. Second, we adopt the concurrency protocol of the B-link
tree [43] to handle SMO. NBTree maintains a high_key (the
largest key in the node) and sibling_ptr in each inner node.
NBTree re-searches in the sibling node if the target key is less
than the high_key, which indicates an SMO has happened on
the node.

V. IMPLEMENTATION

In this section, we first describe the implementation of
NBTree: insert (Section V-A), update/delete (Section V-B), and
search (Section V-C). Then we discuss the generality of our work
(Section V-D).

A. Insert

Algorithm 1 describes the insert operation. After locating the
target leaf, NBTree occupies the next free slot using the atomic
primitive (Line 2). If the leaf is full, NBTree initiates SMO by
setting the smo bit, the highest bit of the bitmap (Line 3-5).
NBTree commits the insertion by updating the bitmap using
CAS (Line 8).

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

804 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Algorithm 1: Insert(K key, V val).

Algorithm 2: SMO(Leaf Leaf).

The procedure of SMO is listed in Algorithm 2. In the copy
phase (Line 1-9), NBTree distributes valid entries with non-zero
keys to newly allocated leaf nodes and constructs the metadata
layers for the new leaves (Line 4-8). For each copied entry,
NBTree sets the highest bit (copy_bit) of the value (Line
5). The copy_bit indicates that the value is copied from the
old leaf in the copy phase, which will be used in the sync phase
to avoid the repeatable synchronizations of an update.

In the sync phase (Line 10-24), NBTree sequentially obtains
the valid entries in the old leaf (entry, Line 11) and new

Algorithm 3: Update(K key, V val).

Algorithm 4: Delete(K key).

leaves (syncEntry, Line 13). If their keys match but values
mismatch (Line 14-16), NBTree uses CAS to synchronize the
lost update. Meanwhile, NBTree clears the copy_bit and sets
the sync_bit (the second highest bit) of the target value in
the new leaf (Line 16). CAS will abort if the copy_bit of the
target value has been cleared. This ensures that any key-value
pair is synchronized at most once during the sync phase. The
sync_bit indicates the value is synchronized from the old leaf,
which will be used in sync_on_write to avoid overwritting the
latest updates. If the key of entry and syncEntry mismatch
(Line 17-22), NBTree synchronizes the lost deletion because it
usually indicates the key ofsyncEntry has been deleted in the
old leaf (Line 19-22). However, there are two exceptions that the
key ofentryhas been deleted in the new leaf. (1) SMO has been
completed by another SMO thread (Line 17). As a result, the
latest operations directly delete the entry in the new leaf without
having to go through the old leaf. In this case, NBTree directly
aborts SMO. (2) A concurrent operation deletes the key of
entry on the old leaf after the entry has been read (Line 18).
Meanwhile, the deletion has been synchronized by other threads
before syncEntry is read. In this case, synchronization is
not required.

In the link phase (Line 25-36), NBTree uses CAS to link the
leaf to both the key-value layer and the metadata layer (Line
27-28). If the previous leaf is in SMO, NBTree will join the
cooperative SMO to avoid the lost update of next pointer (Line
29-31). Finally, NBTree employs HTM to update the parent node
and set the flag.link atomically (Line 32-36).

B. Update/Delete

Algorithm 3 shows the process of the update operation.
NBTree first performs an in-place update in the target leaf
(Line 1-2). If the leaf is in the post-copy phases of its SMO
and the target key exists in the new leaf but its value is not
the latest, NBTree will perform sync-on-write via CAS (Line
3-7). Sync-on-write clears the copy_bit, which prevents the
synchronization invoked by SMO threads from overwriting the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: REVISITING PM-BASED B+-TREE WITH PERSISTENT CPU CACHE 805

Algorithm 5: Search(K key).

current update. It also sets the sync_bit to distinguish it-
self from the update directly operated on the new leaf. When
an update performs sync-on-write, the SMO might have been
completed by other threads. At that time, the latest updates
directly operate on the new leaf without setting sync_bit
or copy_bit. Sync-on-write does not overwrite those new
updates to keep the linearizability. Besides, if the value in the old
leaf has been changed by new updates, NBTree will synchronize
the latest one.

Algorithm 4 depicts the delete operation. Similar to the up-
date, it will synchronize the deletion if necessary.

C. Search

The search operation is shown in Algorithm 5. For the inner
node search (Line 1), we directly reuse the code of FAST&FAIR
and add the key-checking procedure before returning the child
pointer to detect if any update happens. For the leaf node search
(Line 2-15), NBTree directly returns the search result on the
target leaf if SMO is not taking place or it is in the copy phase.
Otherwise, NBTree searches the target key in the new leaf (Line
4-14). NBTree performs sync-on-read if the SMO is in the sync
phase and the search results in two leaves mismatch (Line 9-14).

D. Discussion

Due to the huge application value and mature ecosystem of
persistent memory, many manufacturers are developing their PM
products [44], [45], [46]. Moreover, emerging compute express
link (CXL) [47], [48] is also promising to be used for memory
capacity expanding. Although NBTree is deployed on Intel
Optane DCPMM in this paper, our design can be generalized
to other persistent memory products (the platforms need to
support persistent CPU cache), volatile memory, and future CXL
memory.

The decoupled leaf node design is applicable to other persis-
tent memory products and CXL memory devices, which have
higher latency and lower throughput than DRAM. Decoupling
the metadata layer from the leaf nodes and storing it in fast
DRAM can reduce the access of slow memory devices, thus
improving B+-Tree performance.

The concurrency protocol of NBTree is not limited to being
used solely on Optane DCPMM. Our lock-free design ensures
the concurrent consistency of B+-Tree regardless of whether it
is stored in volatile memory or persistent memory. Moreover,
for PM-based B+-Tree, our concurrency protocol can further
ensure crash consistency if CPU cache is persistent.

Calloc is also a generalized persistent allocator for any PM-
equipped platforms with persistent CPU cache. Calloc can dra-
matically reduce the persistence overhead for PM management
by absorbing most of PM writes in persistent CPU cache.

VI. EVALUATION

In this section, we evaluate the performance of NBTree against
other state-of-the-art persistent B+-Trees. We first describe our
experiment setup (Section VI-A). Then, we perform single-
threaded evaluation (Section VI-B), multi-threaded evaluation
(Section VI-C), and YCSB evaluation (Section VI-D). After that,
we individually evaluate the contribution of each NBTree design
component (Section VI-E). Then, we examine the overhead of
persistent allocators during the index operations (Section VI-F).
Moreover, we compare the performance of indexes in two
persistence modes (eADR and ADR) to unveil the impact of
eADR (Section VI-G). In addition, we evaluate the performance
of NBTree on DRAM to demonstrate the generality of our
design (Section VI-H). Finally, we integrate the evaluated trees
into Redis, measuring the performance in real-world systems
(Section VI-I).

A. Experiment Setup

Testbed: Our testbed machine is a dual-socket Dell R750
server with two Intel Xeon Gold 6348 CPUs, the third generation
Xeon Scalable processors that support eADR and TSX. Each
CPU has 28 cores and a shared 42 MB L3 cache, while each
CPU core has a 48 KB L1D cache, 32 KB L1I cache, 1280 KB
L2 cache. The system is equipped with 512 GB DRAM and
4 TB PM (eight 256 GB Barlow Pass DIMM per socket). Due to
the significantly larger NUMA effects for PM than they are for
DRAM [17], [18], we adhere to the experimental configuration
of previous works [4], [5], [15], [28], [49], binding all threads to
a single NUMA node by default and restricting their access to
the local DRAM and PM to avoid NUMA effects. We install a
PM-aware file system (Ext4-DAX) in fsdax mode to manage
PM devices. Then, we map large files into the virtual address
using PMDK [50] to serve tree nodes allocation. We evaluate
the performance of two persistence modes, eADR and ADR. To
persist a store, we use clwb and mfence in ADR mode and
solely use mfence in eADR mode.

Compared Systems: We compare NBTree against seven state-
of-the-art persistent B +-Trees, including NVTree, WB+ Tree,
FPTree, RNTree, BzTree, FAST&FAIR, and uTree. We directly
use the open-sourced code of uTree [51], FAST&FAIR [49],
BzTree [52], and RNTree [53]. We borrow Liu’s [53] imple-
mentations of WB + Tree, FPTree, and NVTree. We skip the
evaluation of the multi-threaded performance of NVTree and
WB + Tree as their implementations do not support concurrency
control. For variable-sized keys, we only compare NBTree with

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

806 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Fig. 6. Average latency of base operations. (Single thread, uniform
access).

BzTree as the implementations of other trees do not support this
function.

Default Configuration: We warm up each tree with 16 mil-
lion key-value pairs and then run enough time for different
workloads. By default, we use 8-byte keys and values. For
variable-sized keys and values, we store them in the external
memory region, and only keep the pointers (48-bit) in indexes to
indicate their addresses. The node size of each tree is configured
to 1 KB. We run all trees in eADR mode except in Section VI-G.

For fairness comparisons, all persistent indexes employ a
naive persistent allocator by default, which pre-allocates suffi-
cient memory space for each worker thread, thereby eliminating
the performance impact of PM allocations/deallocations. In
Section VI-E, we conduct a separate evaluation to assess the
impact of persistent allocators on index performance.

B. Single Thread Evaluation

In this section, we evaluate the single-thread performance of
base operations (search, insert, update, and delete) in eADR
mode. We run individual operations under random key-access
distribution and then calculate the average latency.

As shown in Fig. 6, NBTree achieves the lowest latency in
every base operation. As the persistence overhead of PM writes
is hidden by CPU cache in eADR mode, we attribute the good
performance of NBTree to low PM line reads. In most cases,
NBTree only causes one PM line read in each operation because
it places the metadata of the leaf nodes in DRAM and uses
fingerprints to filter the unmatched keys. The only PM overhead
of NBTree comes from accessing the matched key-value pairs.

In contrast, as illustrated in Table I, other persistent B +-Trees
produce more PM line reads, resulting in higher latency. We
conclude the source of PM line reads in the following aspects:
(1) Most of the B+-Trees (except uTree) need to access the
metadata of the leaf node in each base operation. The metadata
is often stored in different PM lines from the actual key-value
pair, resulting in additional PM line reads. (2) Searching in
the leaf node causes multiple PM line reads. FAST&FAIR and
NVTree use linear search to locate the key-value pair, which
needs to traverse half of the leaf on average. WB+ Tree, RNTree,
and BzTree perform the binary search, which has a similar PM

Fig. 7. Throughput of base operations. (56 threads, uniform access).

overhead to the linear search when the array size is small. (3)
FAST&FAIR and BzTree produce extra PM line reads when
they perform inner node search because they store inner nodes
in PM. (4) uTree invokes additional PM line reads to access the
sibling node in the linked list, which shows poor locality with
the current node. (5) BzTree applies PMwCAS [40] to atomically
persist the modification. Each PMwCAS produces multiple PM
line reads to access a descriptor with a default size of 256 bytes.

C. Multi-Threaded Evaluation

We evaluate the multi-threaded performance of base opera-
tions under random key access distribution. As shown in Fig. 7,
NBTree achieves the highest throughput in each operation.
Compared with other trees, the throughput of NBTree in 56
threads is 1.6-7.5× higher on insert, 1.5-5.0× higher on update,
2.0-4.9× higher on delete, 1.6-5.1× higher on search. This is
primarily because NBTree minimizes both PM line reads and
writes. Reducing PM line writes in eADR-enabled platforms
is important. The reason is that the modified PM lines in CPU
cache are eventually evicted to PM with low bandwidth. Multi-
threaded writes can saturate CPU cache and WPQ, resulting in
high latency. Besides, excessive PM line reads also degrade the
multi-threaded performance due to the high latency.

NBTree scales well in the multi-threaded evaluation as it
limits the PM line read/writes per operation to 1 in most cases.
The decoupled leaf node of NBTree absorbs the leaf metadata ac-
cesses in DRAM. Consequently, the base operations of NBTree
only generate 1 PM line read/write to read or modify a single
key-value entry in the persistent data layer.

As shown in Table I, other persistent indexes have lower
scalability for their high PM line read/writes. We have analyzed
the cost of PM reads in detail in Section VI-B. Compared
with NBTree, other trees produce extra PM line writes in the
following aspects: (1) They modify the persistent metadata of the
leaf nodes for various usages, such as correct recovery, traversal
acceleration, and concurrency control. (2) BzTree produces the
most PM line writes because it needs to record a 256-byte
descriptor in each PMwCAS, resulting in the lowest scalability.
(3) FAST&FAIR causes additional PM line writes to maintain
the order of leaf nodes. As a result, its throughputs on insertions
and deletions are low.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: REVISITING PM-BASED B+-TREE WITH PERSISTENT CPU CACHE 807

Fig. 8. Space consumption of DRAM and PM varying the number of 8B-8B
key-value entries.

TABLE IV
MEMORY USAGE (MB) OF DIFFERENT COMPONENTS IN NBTREE VARYING THE

NUMBER OF KEY-VALUES (MILLION)

At the cost of performance improvement, Fig. 8 illustrates
that NBTree requires more DRAM space than most previous
works except uTree to store leaf metadata. However, we argue
that the additional DRAM consumption from the metadata layer
is tolerable. As shown in Table IV, the ratio of DRAM and PM
consumption in NBTree is around 1:8, which matches the ratio
of our testbed configuration (1:8). In practice, this ratio will
be much smaller if the value size is large because the values
only reside in PM. Meanwhile, after a crash, NBTree cannot
achieve instant recovery like Bztree and FAST&FAIR, due to
our hybrid DRAM-PM architecture. Rebuilding NBTree from
persistent leaf nodes with 16 million key-value entries needs
to take 0.32 s with a single thread. Nonetheless, the recovery
time of NBTree is comparable with the state-of-the-art hybrid
DRAM/PM persistent indexes, such as FPTree (0.16 s) and
RNTree (0.34 s), and significantly outperforms uTree (7.25 s).

D. YCSB Evaluation

In this section, we evaluate the performance of persistent B+-
Trees with real-world YCSB [54] workloads. We generate the
skewed (zipfian key access distribution) and read-write mixture
workloads based on YCSB. By default, the write operations in
the workload are upsert. Upsert will insert a new key if the target
key does not exist. Otherwise, it performs an update.

Overall Evaluation: Fig. 9 reports the evaluation results under
YCSB workload (read:write=50:50) in a zipfian key access
distribution with the default 0.99 skewness. We observe that
NBTree has almost linear scalability on throughput and near-
constant 99% tail latency with the increase of threads, while
other trees only scale up to 14 threads. In 56 threads, NBTree
achieves 6.0× higher throughput and 32× lower 99% tail latency
than other trees.

Fig. 9. Throughput and 99% tail latency under YCSB workload. (Zipfian
access, skewness = 0.99, Read:write = 50:50).

Fig. 10. Frequency of leaf-level conflicts during the updates to hot keys. (56
threads, zipfian access distribution, skewness = 0.99).

We attribute the high performance of NBTree to our efficient
lock-free design. The skewed workload often introduces a lot
of leaf-level conflicts. The lock-free leaf node operations in
NBTree can scale well under high contentions. When operating
on the leaf that is not performing SMO, NBTree employs atomic
primitives to support lock-free access. When operating on the
leaves in SMO, UDS operations fix the potential anomaly by our
proposed techniques, such as three-phase SMO, sync-on-write,
and sync-on-read, which only introduces at most one additional
leaf node search and one CAS primitive. Concurrent insertions
also apply cooperative SMO to achieve lock-free accesses. Be-
sides, as the writes happen infrequently in inner nodes, our
proposed shift-aware search and HTM-based updates can also
scale well.

In contrast, the scalability of other persistent B+-Trees is
limited by the less efficient concurrency control. For write
operations, those trees (except BzTree) employ a write lock
for each leaf nodes, which result in poor concurrency under
high contentions. As shown in Fig. 10, these trees exhibit a
substantial volume of leaf-level conflicts when accessing hot
key-value entries in the skewed workloads. Despite all four
persistent B+-Trees employing a node-level lock for each leaf
node, uTree and FAST&FAIR outperform FPTree and RNTree,
demonstrating higher performance and lower conflict rates. It is
because that FPTree and RNTree necessitate re-traversing the
inner node when accessing a locked leaf node, while uTree and

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

808 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Fig. 11. Performance varying the write ratio and skewness under YCSB
workload.

FAST&FAIR only need to await the release of the leaf lock.
Meanwhile, uTree has a lower conflict rate than FAST&FAIR
since it reduces the locking duration at the leaf nodes by moving
the slow PM accesses out of the critical path. BzTree achieves
lock-free by utilizing PMwCAS, which is an optimistic approach
implemented by a series of CAS and RDCSS [41] operations.
However, PMwCAS is vulnerable to high contentions and brings
high software overhead [55]. Therefore, BzTree has the lowest
scalability despite its lock-free design. For read operations,
FPTree uses the read-write locks, which means that the read
operations on the leaf nodes are blocked by any write operation.
RNTree uses HTM to handle read-write conflicts in the leaf
nodes, which causes a lot of abortions under high contentions.
uTree and FAST&FAIR perform better than RNTree and FP-
Tree, due to their lock-free search algorithm.

Effect of Skewness: Fig. 11(a) and (c) report the evaluation
results when we vary the skewness (zipfian coefficient) in YCSB
workload (read:write=50:50). We notice that NBTree has bet-
ter performance with the increase of skewness. The reason is
two-fold: (1) Our efficient lock-free designs prevent the con-
currency control from becoming the performance bottleneck.
(2) Our cache-crafty designs, including in-place update and
log-structured insert, have larger effects with the increase of
the skewness. Those designs increase the possibility of write
combining and write hits in CPU cache, which saves the PM
write bandwidth.

With the increase of skewness, other trees have a slight
performance improvement when the skewness is less than 0.8,
which benefits from better cache utilization. When the skewness
is larger than 0.8, they have a dramatic performance drop because
they cannot scale well under frequent leaf-level contentions.

Fig. 12. YCSB performance of the indexes with large key/value. (Zipfian
access, skewness = 0.99, Read:write = 50:50) .

Effect of Write Ratio: Fig. 11(b) and (d) show the evaluation
results when we vary the write ratio of the YCSB workload
(skewness=0.99). We observe that the performance gap be-
comes larger between NBTree and other B+-Trees with the
increase of write ratio. NBTree achieves 11× higher throughput
and 43× lower 99% tail latency under the write-only workload.
This is because NBTree applies efficient lock-free algorithms
for both reads and writes. In contrast, previous works focus on
the optimization of concurrent reads but do not support efficient
concurrent writes.

Effect of Large Key/Value: Fig. 12 reports the evaluation
of indexes when the key-value size is larger than 8 bytes.
We observe that NBTree still achieves significantly higher
throughput than other indexes, especially when the skewness
is high. However, the performance gap between NBTree and
other indexes becomes smaller. The reason is two-fold: (1) The
PM write bandwidth is dominated by persisting large values,
dwarfing the performance benefits from our optimization on
NBTree. (2) NBTree employs the 8-byte pointers to indicate
variable-sized keys, which incurs a lot of pointer dereferences
in inner node search. In contrast, Bztree continuously stores the
variable-sized keys in a single node, which avoids expensive
pointer dereferences.

E. Factor Analysis for Design Components

We conduct two optimizations for NBTree, including decou-
pled leaf node design, and lock-free design, which contribute
the most to the high scalability of NBTree. In this section, we
analyze the impact of these design components in detail.

Decoupled Leaf Node Design: In NBTree, the decoupled leaf
node design minimizes the PM line accesses during the base
operations, allowing NBTree to outperform other persistent B+-
Tree. In order to demonstrate the effect of the decoupled leaf
node design, we implement a variant of NBTree that disables this
design component by storing both metadata and data of the leaf
node in a single persistent layer. Fig. 13 shows that decoupled
leaf node design achieves 2.4× performance improvement in
the insert operations since the modifications of leaf metadata are
absorbed in DRAM. Furthermore, although the UDS operations
do not modify the metadata due to the optimization of NBTree,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: REVISITING PM-BASED B+-TREE WITH PERSISTENT CPU CACHE 809

Fig. 13. Effect of decoupled leaf node design in NBTree. (56 threads, uniform
access).

Fig. 14. Effect of lock-free design in NBTree. (56 threads, zipfian access.
NBTree-W disables lock-free write schemes. NBTree-WR disables both lock-
free write and read schemes).

the decoupled leaf node design still improves their throughput
by up to 29% due to fewer PM line reads.

Lock-free Design: The lock-free design is one of the most
essential components of NBTree, which substantially improves
the multi-core scalability of NBTree for skewed workloads. To
intuitively demonstrate the impact of our lock-free design, we
implement two variant of NBTree (NBTree-W and NBTree-
WR). NBTree-W disables our lock-free write schemes and
applies node-grained write-locks instead, which is similar to
FAST&FAIR and uTree. As shown in Fig. 14, NBTree-W can
not scale well in write-intensive workloads with high skewness
since the high contentions of write operations become the perfor-
mance bottleneck. NBTree achieves 5.5× higher throughput and
48.6× lower tail latency than NBTree-W due to our lock-free
write design. NBTree-WR further disables our lock-free read
approaches and replaces them with node-grained locks for both
read and write operations. We find that NBTree-W achieves up
to 1.8× higher throughput and 47.9× lower tail latency than
NBTree-WR in read-intensive workloads.

Fig. 15. Performance of NBTree under different persistent allocators. (Uni-
form access).

F. The Impact of Persistent Allocator

To show the superiority of Calloc, we evaluate the perfor-
mance of NBTree using different persistent allocators, including
Calloc, the naive allocator mentioned in Section VI-A, and
several open-sourced persistent allocators (PMDK [50], NVAl-
loc [39], nvm_malloc [56]).

As shown in Fig. 15(a), Calloc achieves up to 6.5× higher
throughput than PMDK, NVAlloc, nvm_alloc during insert op-
erations. This is mainly attributed to our cache-crafty design, in-
cluding allocation bitmap, reclaimed ring buffer, and recyclable
log, which utilize persistent CPU cache to absorb most of PM
writes generated during allocation, deallocation, and logging.
In contrast, PMDK, NVAlloc, and nvm_alloc incur significantly
higher PM writes in memory management due to persistent
modifications applied to various metadata (e.g., bitmap, logging,
and bookkeeping).

Fig. 15(b) illustrates that the performance gap between Calloc
and other state-of-the-art persistent allocators diminishes in
the workload involving both insert and delete operations. This
reduction results from the decreased frequency of memory allo-
cations/deallocations triggered by SMO, which is around 4.0×
lower compared to workloads consisting solely of insertions.

Moreover, it is noteworthy that the naive allocator sets the
performance ceiling for persistent allocators since it eliminates
the persistence overhead of memory management by omitting
support for crash consistency and garbage collection. Calloc
achieves comparable performance to the naive allocator, which
further demonstrates that the persistence overhead of Calloc is
minimized.

Furthermore, we also expand the experiments of NBTree to
use both NUMA nodes of our server by adopting per-NUMA
persistent allocators. As shown in Fig. 16, NBTree can achieve
1.7× speedup compared with using a single persistent allocator
since per-NUMA allocators mitigate the impact of NUMA
effects by allocating and initializing tree nodes within local
NUMA nodes. However, the cross-NUMA accesses cannot be
thoroughly eliminated since the subsequent index operations
may still access tree nodes located in the remote NUMA node,
which incurs higher latency and consumes more bandwidth.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

810 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

Fig. 16. Insert performance of NBTree when using two NUMA nodes. (Uni-
form access).

Fig. 17. PM overhead of the leaf nodes in eADR/ADR mode. (Single thread,
uniform access).

G. The Impact of eADR

In this section, we compare the performance of persistent
indexes between two persistence modes (ADR and eADR) to
show the impact of eADR.

Fig. 17 reports the PM overhead of the leaf nodes in two
persistence modes. First, we find that the PM overhead of all
trees is reduced in eADR mode, compared with ADR mode. The
primary reason is that the latency on the critical path caused by
flush instructions is removed. For example, FAST&FAIR has a
significant performance improvement because eADR minimizes
the large overhead of data shifts to keep arrays sorted. The
performance of BzTree also improves a lot because a large
number of flush instructions needed by PMwCAS are removed.
However, PMwCAS is still costly due to excessive PM accesses,
resulting in the poor performance of BzTree. Second, we observe
that NBTree has the lowest PM overhead in ADR mode. This is
attributed to our PM-friendly designs, which cost only one flush
instruction in each write operation.

Fig. 18 shows the performance of two persistence
modes under YCSB workload (56 threads, read:write=50:50,
skewness=0.99). We have the following four observations. First,

Fig. 18. Performance in ADR/eADR mode under YCSB workloads. (56
threads, Zipfian access, skewness = 0.99, Read:write = 50:50).

Fig. 19. YCSB performance on DRAM. (56 threads).

NBTree achieves the most performance improvement with the
eADR support. This is because the cache-crafty designs (e.g.,
in-place update, and log-structured insert) of NBTree take effect
in eADR mode. Second, NBTree also performs the best among
all trees in ADR mode due to the lock-free design. However, the
dirty read anomaly is likely to happen in ADR mode because the
CPU cache is volatile. Third, uTree and FAST&FAIR also speed
up significantly because of the better cache utilization in eADR
mode. Fourth, RNTree, FPTree, and BzTree do not benefit from
eADR because their concurrency control is vulnerable to high
contentions.

H. Performance on DRAM

In order to demonstrate the generality of the NBTree
design, we compare the YCSB performance of NBTree
with MassTree [57] (a state-of-the-art volatile B+-Tree) and
BwTree [23] (a lock-free volatile B+-Tree) on DRAM. As
shown in Fig. 19, NBTree outperforms Masstree and BwTree
by up to 7.6× and 24.2×, respectively, in skewed and write-
intensive workloads. These evaluation results affirm the efficacy
of our proposed lock-free concurrency protocol, applicable not
only for PM but also for DRAM. The performance of Masstree
lags behind NBTree due to the use of node-grained write locks
in Masstree. BwTree achieves lock-free concurrency through a
delta update policy, which atomically links an updated record to
the tree node using a pointer. However, in skewed workloads,
this delta update policy generates a long chain of delta records
for frequently updated pages, incurring a substantial overhead
on page consolidations and page traversal. Moreover, the delta

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: REVISITING PM-BASED B+-TREE WITH PERSISTENT CPU CACHE 811

update fails to leverage the CPU cache to absorb frequent
updates of hot key-value entries. In contrast, NBTree supports
lock-free in-place update, which can not only avoid the chaining
overhead but also fully utilize the CPU cache to enhance write
performance.

I. End-to-End Evaluation

Redis [58] is a popular in-memory key-value store using a
hash table as its index. We use the multi-threaded version of the
Redis [59] and replace its internal index with our evaluated trees.
We run 28 threads on the Redis server in our evaluation. NBTree
achieves the throughput of 1719.4 Kops/s, which is 1.13-1.53×
higher than other state-of-the-art persistent B+-Trees under the
YCSB-A workload [54]. The evaluation results confirm our
previous experiments. Note that the performance gap among
indexes becomes smaller due to the high software overhead of
Redis.

VII. RELATED WORK

A. Indexes Optimized for PM

In ADR-based PM systems, the slow write is the performance
bottleneck of persistent indexes because flush instructions intro-
duce high latency on the critical path. Therefore, previous works
have proposed various ways to optimize the write performance
of persistent indexes. Most persistent B +-Trees, such as WB+

Tree [27], NVTree [26], FPTree [4], RNTree [28], and LB +

Tree [7], implement the unsorted leaf nodes. The reason is
that inserting or deleting an element of the sorted leaf node
produces lots of PM writes to shift array elements. FPTree first
proposes the selective persistence technique to place inner nodes
in DRAM, which speeds up the inner node operations. The
volatile inner nodes can be reconstructed from persistent leaf
nodes after a crash. RNTree and ROART [8] further remove the
flush instructions when modifying reconstructable metadata in
the leaf node to reduce the critical path latency. uTree places
the sorted leaf nodes in DRAM and adds a persistent shadow
list-based layer to ensure crash consistency. In this way, uTree
offloads the expensive structural refinement operations (SRO)
to DRAM. Persistent hash indexes, such as level hashing [12],
path hashing [60], and CCEH [32], also make lots of efforts to
write-efficient designs.

B. Concurrency Control for Persistent Indexes

Previous works propose various concurrency control
strategies for persistent indexes to leverage the benefits
of multi-core processors. For persistent B+-Trees, FPTree
proposes the selective concurrency technique, which handles
the concurrency of inner nodes by HTM and serializes the
accesses of leaf nodes by the node-grained locks. It improves
the scalability in the situation with infrequent contentions
but performs poorly in skewed workloads. Based on FPTree,
RNTree excludes some slow persistent instructions out of the
critical section to achieve more concurrency in the leaf nodes.
FAST&FAIR designs a lock-free search algorithm inspired by
B-link tree [43], which tolerates the transient inconsistent states

caused by write transactions. It improves search performance
but tends to cause consistency problem [9]. uTree supports
lock-free concurrency control for the list layer but still uses the
coarse-grained locks in the leaf nodes. BzTree [15] develops
the first lock-free persistent B+-Tree with PMwCAS [40], which
guarantees both the atomicity and persistence of multi-word
writes. However, PMwCAS causes high software overhead, and
it is also vulnerable to high contentions [55]. As for hash-based
persistent indexes, most of them are lock-based, such as level
hashing [12], CCEH [32], and CMAP [61]. P-CLHT [9] is
a persistent version of CLHT [62], which supports lock-free
search. Clevel hashing [14] is the concurrent version of level
hashing, which uses atomic primitives to implement lock-free
algorithms. However, it doesn’t address the dirty read anomaly.

C. Persistent Allocators

The persistent allocator constitutes a vital component in per-
sistent memory systems. Compared to volatile allocators, per-
sistent allocators encounter a number of additional challenges,
including ensuring crash consistency and preventing memory
leaks. Therefore, persistent allocators [39], [50], [56], [63],
[64] typically produce excessive PM accesses on various types
of metadata, resulting in performance degradation in persis-
tent memory systems. nvm_malloc [56] reduces PM reads by
maintaining volatile copies for metadata headers. NVAlloc [39]
proposes an interleaved mapping approach to create a metadata
layout that prevents costly cacheline reflushes. Makalu [63] em-
ploys a lazy persistence strategy for auxiliary metadata, mitigat-
ing the persistence overhead during the memory management.
However, none of these works can entirely eliminate the over-
head associated with persisting bitmap during small allocations
and maintaining persistent bookkeeping during large alloca-
tions. In terms of ensuring memory safety, a number of works,
including PMDK [50], nvm_malloc [56], and NVAlloc [39],
adopt a logging approach during allocations and deallocations,
leading to additional PM writes. Other persistent allocators, such
as Makalu [63] and DCMM [8], employ a post-crash GC strategy
to eliminate memory leaks, which introduces a significant re-
covery overhead. In contrast, our proposed Calloc leverages the
advantages of persistent CPU cache to minimize the persistence
overhead during the allocation, deallocation, and logging.

VIII. CONCLUSION

Existing persistent indexes suffer from low scalability and
high PM overhead. Fortunately, the new platform feature for
persistent memory (PM) called eADR offers opportunities to
build lock-free persistent indexes and unleash the potential of
PM. In this paper, we propose a lock-free PM-friendly B+-Tree,
named NBTree, which leverages the benefits of eADR. To
achieve high scalability, NBTree develops lock-free concurrency
control strategies. To reduce PM overhead, NBTree proposes
a decoupled leaf node structure and a cache-crafty persistent
allocator, which reduces PM line accesses and improves write
locality. The real-world YCSB evaluation shows that NBTree
achieves up to 11× higher throughput and 43× lower 99% tail
latency than state-of-the-art persistent B+-Trees.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

812 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 35, NO. 5, MAY 2024

REFERENCES

[1] J. Handy, “Understanding the Intel/Micron 3D XPoint memory,” in Proc.
Storage Developer Conf., 2015, pp. 1–30.

[2] Intel, “Deprecating the PCOMMIT instruction,” 2016. [Online]. Available:
https://software.intel.com/content/www/us/en/ develop/blogs/deprecate-
pcommit-instruction.html

[3] Intel, “eADR: New opportunities for persistent memory applications,”
2021. [Online]. Available: https://software.intel.com/ content/www/
us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-
applications.html

[4] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, “FPTree:
A hybrid SCM-DRAM persistent and concurrent b-tree for storage class
memory,” in Proc. Int. Conf. Manage. Data, 2016, pp. 371–386.

[5] Y. Chen, Y. Lu, K. Fang, Q. Wang, and J. Shu, “uTree: A persistent
B+-tree with low tail latency,” Proc. VLDB Endowment, vol. 13, no. 12,
pp. 2634–2648, 2020.

[6] S. Venkataraman et al., “Consistent and durable data structures for non-
volatile byte-addressable memory,” in Proc. USENIX Conf. File Storage
Technol., 2011, pp. 61–75.

[7] J. Liu, S. Chen, and L. Wang, “LB+ trees: Optimizing persistent index
performance on 3DXPoint memory,” Proc. VLDB Endowment, vol. 13,
no. 7, pp. 1078–1090, 2020.

[8] S. Ma et al., “ROART: Range-query optimized persistent art,” in Proc.
19th {USENIX} Conf. File Storage Technol., 2021, pp. 1–16.

[9] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram, “Recipe:
Converting concurrent DRAM indexes to persistent-memory indexes,” in
Proc. 27th ACM Symp. Operating Syst. Princ., 2019, pp. 462–477.

[10] R. M. Krishnan et al., “TIPS: Making volatile index structures persistent
with DRAM-NVMM tiering,” in Proc. USENIX Annu. Tech. Conf., 2021,
pp. 773–787.

[11] X. Zhou, L. Shou, K. Chen, W. Hu, and G. Chen, “DPTree: Differential
indexing for persistent memory,” Proc. VLDB Endowment, vol. 13, no. 4,
pp. 421–434, 2019.

[12] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance hash-
ing index scheme for persistent memory,” in Proc. 13th {USENIX} Symp.
Operating Syst. Des. Implementation, 2018, pp. 461–476.

[13] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, “FlatStore: An
efficient log-structured key-value storage engine for persistent memory,”
in Proc. 25th Int. Conf. Architectural Support Program. Lang. Operating
Syst., 2020, pp. 1077–1091.

[14] Z. Chen, Y. Huang, B. Ding, and P. Zuo, “Lock-free concurrent level
hashing for persistent memory,” in Proc. {USENIX} Annu. Tech. Conf.,
2020, pp. 799–812.

[15] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson, “BzTree: A
high-performance latch-free range index for non-volatile memory,” Proc.
VLDB Endowment, vol. 11, no. 5, pp. 553–565, 2018.

[16] A. Rudoff, “Persistent memory programming,” Login, Usenix Mag.,
vol. 42, no. 2, pp. 34–40, 2017.

[17] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson,
“An empirical guide to the behavior and use of scalable persistent
memory,” in Proc. 18th {USENIX} Conf. File Storage Technol., 2020,
pp. 169–182.

[18] S. Gugnani, A. Kashyap, and X. Lu, “Understanding the idiosyncrasies
of real persistent memory,” Proc. VLDB Endowment, vol. 14, no. 4,
pp. 626–639, 2020.

[19] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and J. Zhao,
“Characterizing and modeling non-volatile memory systems,” in Proc.
53rd Annu. IEEE/ACM Int. Symp. Microarchit., 2020, pp. 496–508.

[20] T. Karnagel et al., “Improving in-memory database index performance
with intel transactional synchronization extensions,” in Proc. IEEE 20th
Int. Symp. High Perform. Comput. Archit., 2014, pp. 476–487.

[21] A. Rudoff, “Persistent memory programming without all that cache flush-
ing,” in Proc. Storage Developer Conf., 2020, pp. 1–38.

[22] A. Alexandrescu, “Generic< programming>: Lock-free data structures,”
in C++ Users J., 2004, pp. 1–7.

[23] J. J. Levandoski, D. B. Lomet, and S. Sengupta, “The BW-tree: A B-tree
for new hardware platforms,” in Proc. IEEE 29th Int. Conf. Data Eng.,
2013, pp. 302–313.

[24] T. L. Harris, “A pragmatic implementation of non-blocking
linked-lists,” in Proc. Int. Symp. Distrib. Comput., Springer, 2001,
pp. 300–314.

[25] M. M. Michael, “High performance dynamic lock-free hash tables and list-
based sets,” in Proc. 14th Annu. ACM Symp. Parallel Algorithms Archit.,
2002, pp. 73–82.

[26] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He, “NV-Tree:
Reducing consistency cost for NVM-based single level systems,” in Proc.
13th {USENIX} Conf. File Storage Technol., 2015, pp. 167–181.

[27] S. Chen and Q. Jin, “Persistent B+-trees in non-volatile main memory,”
Proc. VLDB Endowment, vol. 8, no. 7, pp. 786–797, 2015.

[28] M. Liu, J. Xing, K. Chen, and Y. Wu, “Building scalable nvm-based B+

tree with HTM,” in Proc. 48th Int. Conf. Parallel Process., 2019, pp. 1–10.
[29] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable transient incon-

sistency in byte-addressable persistent B+-tree,” in Proc. 16th {USENIX}
Conf. File Storage Technol., 2018, pp. 187–200.

[30] F. Xia, D. Jiang, J. Xiong, and N. Sun, “HiKV: A hybrid index key-value
store for DRAM-NVM memory systems,” in Proc. {USENIX} Annu. Tech.
Conf., 2017, pp. 349–362.

[31] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “{WORT}: Write
optimal radix tree for persistent memory storage systems,” in Proc. 15th
{USENIX} Conf. File Storage Technol., 2017, pp. 257–270.

[32] M. Nam, H. Cha, Y.-R. Choi, S. H. Noh, and B. Nam, “Write-optimized
dynamic hashing for persistent memory,” in Proc. 17th {USENIX} Conf.
File Storage Technol., 2019, pp. 31–44.

[33] J. Xu and S. Swanson, “{NOVA}: A log-structured file system for hybrid
volatile/non-volatile main memories,” in Proc. 14th {USENIX} Conf. File
Storage Technol., 2016, pp. 323–338.

[34] S. Zheng, M. Hoseinzadeh, and S. Swanson, “Ziggurat: A tiered file system
for non-volatile main memories and disks,” in Proc. 17th USENIX Conf.
File Storage Technol., 2019, pp. 207–219.

[35] J. Condit et al., “Better I/O through byte-addressable, persistent mem-
ory,” in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princ., 2009,
pp. 133–146.

[36] S. R. Dulloor et al., “System software for persistent memory,” in Proc. 9th
Eur. Conf. Comput. Syst., 2014, pp. 1–15.

[37] J. Coburn et al., “NV-heaps: Making persistent objects fast and safe with
next-generation, non-volatile memories,” ACM SIGARCH Comput. Archit.
News, vol. 39, no. 1, pp. 105–118, 2011.

[38] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight per-
sistent memory,” ACM SIGARCH Comput. Archit. News, vol. 39, no. 1,
pp. 91–104, 2011.

[39] Z. Dang et al., “NVAlloc: Rethinking heap metadata management in
persistent memory allocators,” in Proc. 27th ACM Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2022, pp. 115–127.

[40] T. Wang, J. Levandoski, and P.-A. Larson, “Easy lock-free indexing in
non-volatile memory,” in Proc. IEEE 34th Int. Conf. Data Eng., 2018,
pp. 461–472.

[41] T. L. Harris, K. Fraser, and I. A. Pratt, “A practical multi-word compare-
and-swap operation,” in Proc. Int. Symp. Distrib. Comput., Springer, 2002,
pp. 265–279.

[42] W.-H. Kim, R. M. Krishnan, X. Fu, S. Kashyap, and C. Min, “PACTree: A
high performance persistent range index using PAC guidelines,” in Proc.
ACM SIGOPS 28th Symp. Operating Syst. Princ. CD-ROM, 2021, pp. 424–
439.

[43] P. L. Lehman and S. B. Yao, “Efficient locking for concurrent operations
on B-trees,” ACM Trans. Database Syst., vol. 6, no. 4, pp. 650–670, 1981.

[44] Z. Liu, “Fujitsu targets 2019 for NRAM mass production,” 2018.
[Online]. Available: https://www.tomshardware.com/news/fujitsu-nram-
nantero-carbon-nanotube,37437.html

[45] Micron, “Non volatile dual in line memory module NVDIMM market
research report,” 2021. [Online]. Available: https://dataintelo.com/report/
global-non-volatile-dual-in-line-memory-module-nvdimm-market/

[46] U. Xian, “NVDIMM products,” 2022. [Online]. Available: https://www.
unisemicon.com/ index.php?m=content&c=index&a=lists&catid=56

[47] C. Consortium, “Compute express linkTM: The breakthrough
cpu-to-device interconnect,” 2022. [Online]. Available: https:
//www.computeexpresslink.org

[48] A. Benjamin, “Compute express link CXL: Advancing the next generation
of data centers,” 2022. [Online]. Available: https://www.snia.org/pm-
summit

[49] D. Hwang, “Fast&fair,” 2020. [Online]. Available: https://github.com/
DICL/FAST_FAIR

[50] Intel, “Persistent memory development kit,” 2021. [Online]. Available:
http://pmem.io/pmdk

[51] Y. Chen, “uTree,” 2020. [Online]. Available: https://github.com/
thustorage/nvm-datastructure

[52] J. Arulraj, “BzTree,” 2019. [Online]. Available: https://github.com/sfu-
dis/bztree

[53] M. Liu, “RNTree,” 2019. [Online]. Available: https://github.com/liumx10/
ICPP-RNTree

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

https://software.intel.com/content/www/us/en/ ignorespaces develop/blogs/deprecate-pcommit-instruction.html
https://software.intel.com/content/www/us/en/ ignorespaces develop/blogs/deprecate-pcommit-instruction.html
https://software.intel.com/ ignorespaces content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/ ignorespaces content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/ ignorespaces content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.tomshardware.com/news/fujitsu-nram-nantero-carbon-nanotube,37437.html
https://www.tomshardware.com/news/fujitsu-nram-nantero-carbon-nanotube,37437.html
https://dataintelo.com/report/global-non-volatile-dual-in-line-memory-module-nvdimm-market/
https://dataintelo.com/report/global-non-volatile-dual-in-line-memory-module-nvdimm-market/
https://www.unisemicon.com/ ignorespaces index.php{?}m$=$content&c$=$index&a$=$lists&catid$=$56
https://www.unisemicon.com/ ignorespaces index.php{?}m$=$content&c$=$index&a$=$lists&catid$=$56
https://www.computeexpresslink.org
https://www.computeexpresslink.org
https://www.snia.org/pm-summit
https://www.snia.org/pm-summit
https://github.com/DICL/FAST_FAIR
https://github.com/DICL/FAST_FAIR
http://pmem.io/pmdk
https://github.com/thustorage/nvm-datastructure
https://github.com/thustorage/nvm-datastructure
https://github.com/sfu-dis/bztree
https://github.com/sfu-dis/bztree
https://github.com/liumx10/ICPP-RNTree
https://github.com/liumx10/ICPP-RNTree

ZHANG et al.: REVISITING PM-BASED B+-TREE WITH PERSISTENT CPU CACHE 813

[54] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. 1st ACM
Symp. Cloud Comput., 2010, pp. 143–154.

[55] L. Lersch, X. Hao, I. Oukid, T. Wang, and T. Willhalm, “Evaluating
persistent memory range indexes,” Proc. VLDB Endowment, vol. 13, no. 4,
pp. 574–587, 2019.

[56] D. Schwalb, T. Berning, M. Faust, M. Dreseler, and H. Plattner, “NVM
malloc: Memory allocation for NVRAM,” Adms@ Vldb, vol. 15, pp. 61–
72, 2015.

[57] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore
key-value storage,” in Proc. 7th ACM Eur. Conf. Comput. Syst., 2012,
pp. 183–196.

[58] Redis, “Redis,” 2009. [Online]. Available: https://redis.io
[59] Vipshop, “Redis,” 2017. [Online]. Available: https://github.com/vipshop/

vire
[60] P. Zuo and Y. Hua, “A write-friendly and cache-optimized hashing scheme

for non-volatile memory systems,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 5, pp. 985–998, May 2018.

[61] Intel, “Key/value datastore for persistent memory,” 2019. [Online]. Avail-
able: https://pmem.io/pmemkv/index.html

[62] T. David, R. Guerraoui, and V. Trigonakis, “Asynchronized concurrency:
The secret to scaling concurrent search data structures,” ACM SIGARCH
Comput. Archit. News, vol. 43, no. 1, pp. 631–644, 2015.

[63] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Makalu: Fast recover-
able allocation of non-volatile memory,” ACM SIGPLAN Notices, vol. 51,
no. 10, pp. 677–694, 2016.

[64] I. Oukid, D. Booss, A. Lespinasse, W. Lehner, T. Willhalm, and G.
Gomes, “Memory management techniques for large-scale persistent-main-
memory systems,” Proc. VLDB Endowment, vol. 10, no. 11, pp. 1166–
1177, 2017.

Bowen Zhang received the BS degree from Shanghai
Jiao Tong University in 2021. He is currently working
toward the PhD degree with Shanghai Jiao Tong
University. His research interests include persistent
memory-based storage systems, key-value stores, and
distributed systems.

Shengan Zheng received the BS and PhD degrees
from Shanghai Jiao Tong University, in 2014 and
2019, respectively. He is currently an assistant profes-
sor with Shanghai Jiao Tong University. His research
interests include persistent memory-based storage
systems, file systems, and distributed systems.

Liangxu Nie received the BS degree from Shanghai
Jiao Tong University in 2021. Currently, he is work-
ing toward the MS degree with the same institution.
His areas of research focus primarily on persistent
memory-based storage systems and key-value stores.

Zhenlin Qi received the BS degree from Shanghai
Jiao Tong University in 2021. He is currently working
towards the PhD degree with Shanghai Jiao Tong
University. His research interest includes file system,
memory management system, and distributed system
design.

Hongyi Chen received the BS degree from Shanghai
Jiao Tong University in 2023. His research interests
include persistent memory-based storage systems and
persistent memory management.

Linpeng Huang (Senior Member, IEEE) received
the MS and PhD degrees in computer science from
Shanghai Jiao Tong University, in 1989 and 1992,
respectively. He is currently a professor in computer
science with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University. His
research interests include distributed systems and
service-oriented computing.

Hong Mei (Fellow, IEEE) received the PhD degree
from Shanghai Jiao Tong University, China, in 1992.
He is a professor of computer science with Shanghai
Jiao Tong University, China and Peking University,
China. His main research interests range over soft-
ware engineering and system software. He is a fellow
of the TWAS, a member of Chinese Academy of
Sciences, and a foreign member of the Academia
Europaea.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 13,2024 at 01:18:15 UTC from IEEE Xplore. Restrictions apply.

https://redis.io
https://github.com/vipshop/vire
https://github.com/vipshop/vire
https://pmem.io/pmemkv/index.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

